Warning: Generation Green could be in a classroom near you!

2008-10-15

British Gas sent me a link to Generation Green. A classic greenwashing move: they seem to have paid a charity to produce a load of “green” lesson plans as a way to get their trademark embedded into every classroom, and therefore also into the minds of every future energy consumer. Leaving aside, for now, the ethics of corporate sponsorship of the classroom (hint: it’s wrong), what is the content like?

I had a look at Lesson 4 – Exploring sources of energy (part 1). One of the resources for this lesson is the “Energy Source Information Cards”: a series of 10 cards, one for each source of energy (coal, nukes, wind, and so on). There’s a Word document containing these that you can download (lower right of the web page I linked to).

It is from these cards that the students will be taking the factoids and copying them onto their posters in colourful crayon so that the posters can be displayed on the corridor walls in time for the first parents’ evening of term.

So, how are they? Well, a bit poor. On the whole, I’m a bit disappointed that “facts” like these are getting fed to children (and, more worryingly, their teachers). The perfect antidote to this generationgreen nonsense would be to use David MacKay’s book, Without Hot Air (go on, it’s free!). The chapters are bite-sized (especially the earlier ones), and they contain facts, and references, and good stuff.

The howlers in the “Information Cards” are Wind (mechanism wrong way round), Biomass (written by two people that never saw each other’s work), and Wave (written by someone who has no idea where the energy in waves is).

Overall there is a confusion between power and electricity. Every card has a section on how electricity is generated using that source. The Natural Gas card points out that gas can be piped into people’s homes, but there’s no mention of the fact that this is then used for heating not electricity generation. Coal, gas, oil, and biomass can be used more efficiently for heating applications directly than via conversion to electricity, but this is never mentioned. Nor is the fact that this is only of limited use because we only exploit a limited amount of low-grade heat.

There is also confusion about cost. Sometimes high capital cost (hydro) is mentioned, sometimes it isn’t (nukes). Often zero running cost is mentioned (wave) without mentioning capital. The important cost, total cost per kWh over the entire lifetime of the plant, is never mentioned.

There is also some confusion about pollution and global warming. Pollution is bad, global warming is bad. But these things are completely separate. There’s a tendency in the cards to assume that anything emitted into the air is bad, because of global warming and pollution; they’re not always specific enough about which it is.

Perhaps you can pick a different lesson and mock that, then at the end we can collect all our answers together and have a chat and make a nice poster?

Page 1 – Traditional Coal

This card is basically fine. The only things worth mentioning:

“Hard black substance that is found buried deep underground.”

Coal is not always hard (anthracite is, but it’s not the only form of coal), and it’s not always buried deep underground (I have picked it up on beaches).

Page 2 – Natural Gas

Basically fine.

Page 3 – Crude Oil

Typo: “most well knows” should be “most well known”.

There’s a double count in the disadvantages: “Burning oil pollutes the air”, and “Burning crude oil produces other emissions e.g. sulphur dioxide”. The “other emissions” are the pollution from burning oil. Perhaps better would be “Burning oil pollutes the air with sulphur dioxide and other emissions” (as does coal, by the way).

Page 4 – Wind Energy

“Wind is the effect of air flowing from low pressure to high pressure.” No, no, no, no, no. Bzzt. You’re wrong. Following is “The air in the warm regions rises and the cool air rushes in to replace it and this is what we know as wind”. A somewhat simplistic explanation, but that’s okay. The “this” is a horribly ambiguous reference; “this movement of air” would be better.

“As one of the windiest countries in Europe, it is perfect for our climate”. Yes, assuming we want to carpet bomb the British Isles with wind turbines. David MacKay’s ludicrously optimistic sketch of using 1/3 of our offshore coast for wind power (including uneconomical deep offshore wind) and carpeting 10% of our land (!) with onshore wind gives 58 kWh/day per person, or nearly half of the UK consumption. Perfect.

“Once it is built the fuel costs nothing”. Not true: offshore wind turbines need frequent replacement of the gear boxes due to sea-salt corrosion (and this should go in the disadvantages section).

Page 5 – Geothermal

Basically fine.

Page 6 – Biomass

In advantages: “It supports farmers because they can sell their crops for biomass fuel”. Whilst this is true it is seems silly to single out farmers. An advantage of wind energy is that it supports turbine blade manufacturers because they can sell their turbine blades as parts; an advantage of crude oil is that it supports oil drillers because they can sell their oil for fuel. It’s just a silly argument. What if crack cocaine was a fuel, would we be saying “it supports drug dealers because they can sell their stash for fuel”?

The “advantages” contradict the “disadvantages”. “Biomass fuel tends to be cheap” versus “Biomass can be relatively expensive compared to other sources of energy”. “Burning biomass produces carbon dioxide gas which contributes towards global warming”, strictly true but as the same card explains in the “advantages” section: “Although carbon dioxide is released when biomass is burned, it is still a carbon neutral source of energy. The amount of carbon dioxide that is released when biomass fuel is burnt is the same as the amount of carbon dioxide absorbed by the plants when they were growing.”

Page 7 – Uranium

“It does not contribute to the greenhouse effect because it does not produce smoke or carbon dioxide”. Mentioning “smoke” is absurd. The smoke produced by other sorts of power generation does not contribute to the greenhouse effect, quite the opposite. Smoke is an aerosol that has a cooling effect. Smoke is of course a pollutant, so nukes avoid air pollution, which is worth mentioning.

In advantages: “It produces small amounts of waste”. True, but so misleading. They make up for it in the disadvantages.

“It is not renewable; when the uranium is used it can not be replaced”. True, but worth mentioning the possibility of sea-dissolved uranium, which is replaced (er, I think).

“It is very difficult to turn off a nuclear power station”. Again, true, but it would be good to say a little bit on why this is a disadvantage. The reason it’s a problem is that no-one wants electricity at night but the nuclear power stations generate it anyway; you have to throw it away.

Page 8 – Solar Energy

“Every second, the Sun turns millions of tonnes of hydrogen into energy”. Well intuitively this didn’t seem right to me, but it turns out to be both right and wrong. The sun converts mass into energy at the rate of 4.4e9 kg per second (or 4.4 million tonnes, if you’d rather), and of course that mass is hydrogen. But it’s a little bit misleading not to mention the 600e9 kg of hydrogen that get converted to helium in the process. In other words every second, the Sun turns 600 million tonnes of hydrogen into helium, producing some energy in the process.

Only talks about PV, doesn’t mention solar concentration electricity generation such as the 11 MW PS10 tower in Spain (warning, EU press release).

Page 9 – Hydroelectric Energy

Hmm, it says here “Solar power can be used to create electricity in remote places where it might be very hard to get
electricity through cables”. Oh rly? What’s that got to do with hydro? Nothing, that’s what. Cut-and-paste hack-job.

Then the voice changes. Suddenly we see “we”: “We can control when the electricity is made by opening and closing the dam gates.”, and “Electricity can be generated 24 hours a day as long as we have the water”. It just hasn’t been proofread.

Disadvantages: “It is very expensive to build a dam”. Oh rly? Well, it is very expensive to build a nuclear reactor, and very expensive to build a wind farm the size of Wales, but you didn’t seem to mention that. Just casting about for disadvantages were we?

Another disadvantage: “There can be negative environmental impacts as water quality and quantity downstream can be affected and have a knock on effect on wildlife”. True, but there can be a positive effect on wildlife as well, as water habitats are created upstream of the dam and they are exploited by suitable species.

Page 10 – Wave Energy

“Wave energy is harnessed from the movement of the surface water of lakes, rivers and oceans.” Wrong. Should read “oceans” for “lakes, rivers, and oceans”. You cannot get usable energy from a wave on a lake. And as for rivers, stop laughing at the back. “Turbines can be placed by the shore, where the movement is at its strongest.” The latter bit, “where the movement is at its strongest” seems like a dubious claim to me. Surely the Atlantic waves have just as much movement a few miles offshore? The advantage of shore placement is shorely (sorry!) shorter cables?

“The wave acts like a piston that pushes air up and down an oscillating water column.” Well, that’s one way to get energy out of a wave, and it’s (kind of) how the Islay LIMPET works, but there are many other ways. Pelamis works by using the flexion of a linear body floating on the surface to drive hydraulic rams. CETO works by having a submerged buoy drive a piston to pump seawater inland at high pressure which then drives generating turbines. Salter’s Duck works, as far as I can tell, a bit like a self-winding watch.

“As an island we have lots of access to the coast and therefore could harness a lot of wave energy.” Yeah man, a lot of energy. According to MacKay, the total Atlantic wave energy hitting Great Britain amounts to 16 KWh/d per person or about 1/8 of our total consumption. If we exploited all of that then the Newquay tourism industry would be very annoyed (a disadvantage not mentioned, incidentally).

“It can be unreliable because it depends on the waves – sometimes you’ll get loads of energy, sometimes nothing”. Ah, no. Wave power is about the most reliable source of energy derived from a moving mass. Thousands of kilometres of Atlantic fetch can’t be wrong. There are always waves.

“Some designs can be very noisy”. Surely bogus, because no-one is proposing living next to them. Visually distracting, maybe, and a menace to fishing and shipping, but those disadvantages aren’t mentioned.

That’s all folks! Don’t forget your homework now, pick a lesson and tear it apart!

About these ads

2 Responses to “Warning: Generation Green could be in a classroom near you!”

  1. Francis Davey Says:

    I liked “When coal is burned steam is produced”.

    The quality of the proof reading is (as you say) atrocious: “mantel” = “mantle”, “counties”=”countries” and so on.

    I’d really not want to use this material in teaching.

  2. Gareth Rees Says:

    This sentence from the coal card is misleading but not quite wrong: “Over millions of years these plants and animals underwent a chemical process that changed them into coal.” What are “animals” doing here? Some coal contains animal remains, but animal fossils are very rare in coal seams, whereas plant fossils are ubiquitous.

    This is also misleading but not quite wrong: “When coal is burned steam is produced”. If you don’t already know how a steam engine works then the omission of mention of a boiler might lead you to think that the steam is a direct product of the burning of coal. (Cf. natural gas combined cycle turbines where chemical products from the burning of the gas are used to turn one set of turbines.) Are there coal-fired combined cycle power plants? I found some proposals on the web but I couldn’t find any that are running yet. (Even then, it would be carbon dioxide, not steam, turning the direct turbine.)

    “Coal-fired power stations are not very energy efficient.” Compared to what? The best coal-fired stations operate pretty close to the thermodynamic limits. The main lack of efficiency is the failure to make good use of the waste heat.

    It’s too depressing to go on. I suppose “misleading but not quite wrong” is the slogan of the misinformation industry.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: